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Abstract

A computational model for random vibration analysis of vehicle–track systems is proposed and solutions use the pseudo

excitation method (PEM) and the symplectic method. The vehicle is modelled as a mass, spring and damping system with

10 degrees of freedom (dofs) which consist of vertical and pitching motion for the vehicle body and its two bogies and

vertical motion for the four wheelsets. The track is treated as an infinite Bernoulli–Euler beam connected to sleepers and

hence to ballast and is regarded as a periodic structure. Linear springs couple the vehicle and the track. Hence, the coupled

vehicle–track system has only 26 dofs. A fixed excitation model is used, i.e. the vehicle does not move along the track but

instead the track irregularity profile moves backwards at the vehicle velocity. This irregularity is assumed to be a stationary

random process. Random vibration theory is used to obtain the response power spectral densities (PSDs), by using PEM to

transform this random multiexcitation problem into a deterministic harmonic excitation one and then applying symplectic

solution methodology. Numerical results for an example include verification of the proposed method by comparing with

finite element method (FEM) results; comparison between the present model and the traditional rigid track model and;

discussion of the influences of track damping and vehicle velocity.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Track irregularity is well known to be an important source of vibration of coupled vehicle–track systems,
where the track consists of a pair of rails supported by sleepers and ballast. Therefore, it is necessary to study
the random vibration characteristics of such systems. The present paper is restricted to vertical vibrations,
i.e. rotation of the vehicle about its longitudinal and vertical axes are ignored.

Two kinds of excitation model are available for analyzing this coupled system, namely fixed excitation and
moving excitation ones. In the fixed excitation model, it is assumed that the vehicle is stationary while the
track irregularity moves backwards at the vehicle velocity. This model can account for both vibration of the
vehicle and wheel–rail contact forces and it enables solutions to be obtained relatively easily in the frequency
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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domain. In the moving excitation model, the vehicle moves along the track at its actual velocity V, which is
more realistic. However, the system is time dependent and so is much harder to analyze by random vibration
theory.

Only a few studies have concentrated on random vibration analysis of vehicle–track systems. Chen [1]
derived response power spectral densities (PSDs) by using the fixed excitation model and random vibration
theory. Nonlinear contact springs have also been used to account for elasticity of the wheels and rails adjacent
to their contact points [2,3]. The first step in this approach [2,3] is to calculate the dynamic responses in the
time domain by using a sample of the track profile irregularity derived from its PSD, and then transforming
these responses into the frequency domain to get response PSDs. As yet, there is no mature random vibration
theory for such nonlinear problems. Therefore, the objective of the present paper is to study this problem by
using the fixed excitation model and the linear random vibration theory and to show that this gives a very
efficient method.

Two difficulties arise during computational analysis of the random vibration of the coupled system. The first
difficulty is that the number of degrees of freedom (dofs) is very large, e.g. 400–500 dof are necessary for the
vertical model [1,4]. The second difficulty is that the problem is a multiexcitation one, for which the excitations
at the interaction points between the wheelset and the rails are correlated, so that the random vibration
analysis is very time consuming. The first difficulty can be overcome by regarding the track as a periodic
structure [5–8]. In recent years a new solution method has been proposed for wave propagation in periodic
structures, which employs symplectic methodology [9–12] and has been used to investigate random wave
propagation [13–15]. The second difficulty has been overcome by using the fact that there are only time lags
between the excitations in order to transform the multiexcitation problem into a generalized single excitation
one [1,16–18].

The present paper uses a computational model of the vehicle–track system to perform random vibration
analysis by combining the pseudo excitation method (PEM) and a symplectic solution method. This
combination is very powerful because it has been shown [16–18] that PEM is easily the fastest way to deal with
random multiexcitation problems, which it transforms into deterministic harmonic excitations, regardless of
whether the excitations are fully or only partially coherent. The vehicle is modelled as its body, two bogies and
four wheelsets, which are connected by spring and damping systems. Hence, the model has 10 dofs, consisting
of vertical and pitching motion of the vehicle body and bogies and; vertical motion of the wheelsets (see Fig. 1,
which is described in more detail later). The rails are treated as an infinite Euler beam elastically connected to
sleepers and hence to ballast to form the longitudinally periodic track. Linear springs are used to couple the
vehicle and track to represent local elasticity, as described above. The resulting coupled system has only 26
dofs. In this paper, a fixed excitation method is used, i.e. instead of the vehicle moving forwards with velocity
V, the track irregularity moves backwards at velocity V and is taken to be a stationary random process.
Fig. 1. Model of vehicle–track coupled system. Here M (or m), k, c and J denote, respectively, for each of the components shown, mass,

stiffness, damping coefficient and rotatory moment of inertia.
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The response PSD is derived from random vibration theory by using PEM to transform the random
multiexcitation problem into a deterministic harmonic excitation problem for which symplectic solution
methodology is applied to solve the harmonic responses of the vehicle and track systems. A numerical example
is used to verify the proposed method and its associated computer program by comparing results with those
given by finite element method (FEM). Then comparison between the present model and the traditional rigid
track model is made and the influence of track damping and vehicle velocity is discussed. Finally, some useful
conclusions are drawn.

2. The fixed model for the vehicle–track system

The model used for random vibration analysis of the vehicle–track system is shown in Fig. 1. The vehicle
body and its bogies are treated as rigid and the vehicle is modelled by these and by the two layers of springs
and dampers shown, so that there are 10 dofs, consisting of vertical and rotational (about the transverse axis)
motion of the vehicle body (uc, yc) and its two identical bogies (ut1, yt1, ut2 and yt2), plus the vertical motion of
the four rigid wheelsets (uw1, uw2, uw3 and uw4). The track consists of a pair of rails, which are modelled as a
single infinite beam, and sleepers and ballast, which support it via the springs shown. r(x) is the track
irregularity, which varies with distance x and can be taken as a stationary random process. The irregularity
moves backwards at the vehicle velocity V. In general, the springs used to represent the local elasticity of the
wheels and rails at their contact points are nonlinear ones, which are based on the Hertz formula, but in the
random vibration theory of this paper the linearized spring [1]

kh ¼ 3P
1=3
0 =G

is assumed, where P0 is the static wheel–rail load between one wheel and one rail, G is the contact constant and
the spring kh represents contact between a wheelset and the pair of rails. Hence, the entire system of Fig. 1 is
linear and independent of time.

3. PEM for stationary fully correlated multiexcitation

PEM can deal with stationary or nonstationary multiexcitation problems, which are either fully
or partially correlated, but only stationary and fully correlated multiexcitation is covered by this
paper, as follows. Note that this section gives the key equations only, because their derivation has been
given elsewhere [17,18].

Consider a structure with n dofs and subjected to m stationary out-of-phase excitations. Its equation of
motion is

M€yþ C_yþ Ky ¼ JfðtÞ (1)

where t is the time, y is the displacement vector; M, C and K are the mass, damping and stiffness matrices,
respectively; J is an n�m constant matrix which expresses the excitation distribution within the structure
and; f(t) is a random excitation vector in which each element is derived from the same excitation source F(t)
via Eq. (2):

fðtÞ ¼ fa1F ðt� t1Þ; a2F ðt� t2Þ; � � � amF ðt� tmÞg
T (2)

Here, tj (j ¼ 1, 2,y,m) is the time lag; aj is a constant coefficient which expresses the intensity of the excitation
and; the superscript T denotes transpose.

If SFF(o) is defined as the PSD of F(t), where o is the frequency, then the input PSD matrix Sin(o) of the
excitation can be expressed as

SinðoÞ ¼

a2
1 a1a2 e

ioðt1�t2Þ � � � a1am eioðt1�tmÞ

a2a1 e
ioðt2�t1Þ a2

2 � � � a2am eioðt2�tmÞ

� � � � � � � � � � � �

ama1 e
ioðtm�t1Þ ama2e

ioðtm�t2Þ � � � a2
m

2
66664

3
77775SFF ðoÞ (3)



ARTICLE IN PRESS
F. Lu et al. / Journal of Sound and Vibration 317 (2008) 236–249 239
Then random vibration theory enables the response PSD matrix Sout(o) to be written as

SoutðoÞ ¼ HnðoÞSinðoÞHðoÞ
T (4)

in which H(o) is the frequency-response matrix and the asterisk denotes complex conjugate and the
superscript T denotes transpose.

It would be very time consuming to compute the matrix Sout(o) directly from Eq. (4) and so PEM is used
instead, as follows. Assume that the structure is subjected to a pseudo excitation

~fðtÞ ¼ fa1 e
�io t1 a2e

�io t2 . . . ame
�io tmg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SFF ðoÞ

p
eiot (5)

Then, the corresponding response vector will be ~y ¼ HðoÞ~fðtÞ. It has been proved in Ref. [17] that a vector ~y
can be found such that multiplying its complex conjugate by its transpose gives Sout(o), i.e.

Sout ¼ ~yn ~yT (6)

Hence, the velocity and acceleration response PSD’s matrix, Sv and Sa, can be obtained as, respectively,

Sv ¼ o2Sout; Sa ¼ o4Sout (7)

Note that PEM transforms random multiexcitation into harmonic excitation and avoids matrix
multiplication.

In the present paper, the excitation source F(t) becomes the track irregularity r(x) and so the excitation
vector f(t) becomes R(x), where

RðxÞ ¼ frðxÞ; rðx� 2ltÞ; rðx� 2lcÞ; rðx� 2lt � 2lcÞg
T (8)

Note that here the intensity of excitation at each wheel–rail contact point is the same and equal to 1, i.e. aj ¼ 1,
and instead of times lags there are now only distance lags between the elements of R(x). Therefore, because the
vehicle is treated as stationary, so that the irregularity moves backwards with velocity V, we have x ¼ Vt (note
that this implies that the x axis is horizontal and points to the left on Fig. 1). Substituting this into Eq. (8) and
using PEM, the pseudo excitation vector can be constituted as

~RðtÞ ¼ fr1; r2; r3; r4g
T ¼ fe�iot1 ; e�iot2 ; e�iot3 ; e�iot4gT

ffiffiffiffiffiffiffiffiffiffiffiffi
~SrðoÞ

q
eiot (9)

t1 ¼ 0; t2 ¼ 2lt=V ; t3 ¼ 2lc=V ; t4 ¼ 2ðlt þ lcÞ=V ; ~SrðoÞ ¼ SrðOÞ=V ; O ¼ o=V

Note that it is assumed that Sr(O), the PSD of r(x), is known and that Eq. (9) means that the coupled system
has a deterministic harmonic irregularity for each O as its input, so that the corresponding responses are now
considered.
4. Symplectic analysis of track frequency-response characteristics

Section 4.1 gives the key aspects of the well-established [9–12] symplectic solution method for
solving wave propagation problems for periodic structures and then Section 4.2 shows how it is applied to
the track.
Fig. 2. A periodic structure.
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4.1. Wave propagation in periodic structures

Fig. 2 shows a periodic structure in which a harmonic wave with frequency o is assumed to propagate. The
undamped equations of motion of the substructure can be partitioned to give

ðK� o2MÞ

ui

ua

ub

8><
>:

9>=
>; ¼

K0
ii K0

ia K0
ib

K0
ai K0

aa K0
ab

K0
bi K0

ba K0
bb

2
64

3
75

ui

ua

ub

8><
>:

9>=
>; ¼

pi

pa

pb

8><
>:

9>=
>; (10)

where ua and ub are the displacement vectors at the left- and right-hand interfaces; ui is an internal
displacement vector and; pa, pb and pi are the corresponding nodal force vectors. Now ua, ub, pa, pb and pi can
be expressed in mode space as

ua ¼ Xbb; ub ¼ Xaa (11a)

pa ¼ pae � Pbua; pb ¼ pbe � Paub; pi ¼ pie (11b)

Pa ¼ NaX
�1
a ; Pb ¼ �NbX

�1
b

where a and b are coefficient vectors; pae, pbe and pie are external harmonic load vectors; Pa and Pb are the
dynamic stiffness matrices at the two interfaces of the substructure, respectively; and Xa, Xb, Na and Nb are
square matrices which are obtained from the eigenvectors of the wave propagation transformation matrix
S(o), see Eq. (13), as follows:

SðoÞ ¼
Saa Sab

Sba Sbb

" #
(12)

Saa ¼ �K
�1
ab Kaa; Sab ¼ K�1ab

Sba ¼ �Kba þ KbbK
�1
ab Kaa; Sbb ¼ �KbbK

�1
ab

Kaa ¼ K0
aa � K0

aiðK
0
iiÞ
�1K0

ia; Kab ¼ K0
ab � K0

aiðK
0
iiÞ
�1K0

ib

Kbb ¼ K0
bb � K0

biðK
0
iiÞ
�1K0

ib; Kba ¼ KT
ab

It has been proved in Ref. [12] that S(o) is a symplectic matrix and that if m is an eigenvalue of S(o),
then so is 1/m. These eigenvalues are called propagation coefficients because they express the wave
propagation characteristics. Now assume that S(o) has 2n eigenvalues and let them be separated into two
groups:

ðaÞ mi i ¼ 1; 2; . . . ; n; jmijp1; ðbÞ mnþi ¼ 1=mi; i ¼ 1; 2; . . . ; n; jmnþijX1

Hence, the corresponding eigenvectors can be used to constitute the matrix

U ¼ u1; u2; . . . ; u2n

h i
�

Xa Xb

Na Nb

" #
(13)

For a loaded substructure, substituting Eq. (11) into Eq. (10) gives

Kn

aa Kn

ab

Kn

ba Kn

bb

" #
b

a

� �
¼

pna

pnb

( )
(14)

Kn

aa ¼ ðKaa þ PbÞKb; Kn

ab ¼ KabXa

Kn

bb ¼ ðKbb þ PaÞKa; Kn

ba ¼ KbaXb

pna ¼ pae � K0
aiðK

0
iiÞ
�1pie; pnb ¼ pbe � K0

biðK
0
iiÞ
�1pie
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Eq. (14) is the wave propagation equation of a loaded substructure for which pae, pbe and pie represents the
load. If an external harmonic load acts on any chosen substructure, it will generate two waves, which
propagate, respectively, to its left and to its right. If a and b of the substructure are obtained by solving
Eq. (14), it is possible to obtain any required response at the kth interface, where positive k is to the right of the
loaded substructure and negative k is to its left, with the zeroth interface being between the loaded
substructure and the one to its right for k40 and to its left for ko0:

ukr ¼ Xal
ka; pkr ¼ Paukr; kX0 (15a)

ukl ¼ Xbl
�kb; pkl ¼ �Pbukl ; kp0 (15b)

Here, l is a diagonal matrix of order n, in which the ith diagonal element is mi (|mi|p1), i.e. l consists of the mi

of (a), see Eq. (13).
Damping is neglected in the above derivation, but hysteretic damping can be included simply by multiplying

the above static stiffness matrices by ein [13–15], where i ¼
ffiffiffiffiffiffiffi
�1
p

and n is a damping coefficient ð0on51Þ.
Thus, Eq. (10) can be rewritten as

ðK� bMÞ

ui

ua

ub

8><
>:

9>=
>; ¼ e�iv

pi

pa

pb

8><
>:

9>=
>;; b ¼ e�ivo2 (16)

Comparison between Eqs. (16) and (10) shows that all the above derivations are still valid if o2 is replaced
by b and the nodal force vectors are multiplied by ein.

4.2. Model of the track

The track is regarded as a periodic structure in which the substructure consists of the pair of rails between
neighboring sleepers, a sleeper and the associated ballast, see Fig. 3. For this substructure, the mass of the
sleeper and ballast are ms and mb, respectively, and the pair of rails is represented by a single Bernoulli–Euler
beam of length l, flexural rigidity EI and mass per unit length mr. Additionally, the elastic properties of the rail
pad, ballast and subgrade are represented by the equivalent springs with the stiffnesses shown on Fig. 3, i.e. kp,
kb and kf, respectively. The substructure has 6 dofs, i.e. 2 dofs of the beam representing the rails at each of its
two interfaces and 2 dofs of the sleeper and ballast. Therefore, there will be two propagation coefficients of
which the absolute value is no greater than 1. The static stiffness matrix K and the mass matrix M of a
substructure needed by Eq. (10) are

K ¼

12EI=l3 6EI=l2 �12EI=l3 6EI=l2

6EI=l2 4EI=l �6EI=l2 2EI=l

�12EI=l3 �6EI=l2 12EI=l3 þ kp �6EI=l2 �kp

6EI=l2 2EI=l �6EI=l2 4EI=l

�kp kp þ kb �kb

�kb kb þ kf

2
6666666664

3
7777777775
Fig. 3. The periodic track model and the repeating structure used to analyze it.



ARTICLE IN PRESS
F. Lu et al. / Journal of Sound and Vibration 317 (2008) 236–249242
M ¼
Mu 0

0 Md

" #
; Mu ¼

mr

420

156 22l 54 �13l

22l 4l2 13l �3l2

54 13l 156 �22l

�13l �3l2 �22l 4l2

2
6664

3
7775; Md ¼

ms 0

0 mb

" #

Hence Section 4.1 gives Kn

aa, K
n

ab, K
n

ba and Kn

bb and these are used in Eq. (19).
5. Solution of the coupled vehicle–track system

In this section, the equation of motion of the coupled system excited by the harmonic track irregularity ~RðtÞ
is set up and any required response PSD can also be derived.
5.1. Equation of motion of the vehicle

The equation of motion of the vehicle is [1]

ðKv þ ioCv � o2MvÞuv ¼ Kd
vuv ¼ fv (17)

where Mv, Cv and Kv are the (10� 10) mass, damping and stiffness matrices of the vehicle, respectively, Kv
d is

the dynamic stiffness matrix; uv is the displacement vector and; fv is the force vector.

uv ¼ fuc; yc; ut1; yt1; ut2; yc2; uw1; uw2; uw3; uw4g
T (18a)

fv ¼ f0; 0; 0; 0; 0; 0; f 1; f 2; f 3; f 4g
T (18b)

here fi (i ¼ 1, 2, 3, 4) is the wheel–rail force.
5.2. The equation of motion of the track substructures subjected to wheel– rail forces

As shown in Fig. 1, because in practice 2lt and 2(lc�lt) both exceed the sleeper spacing l there are four
substructures subjected to wheel–rail forces. According to Eq. (14), the equation of motion of the ith
substructure is

Kn

aa Kn

ab

Kn

ba Kn

bb

" #
bi

ai

( )
¼ Kd

t

bi

ai

( )
¼ �NðxiÞf i ði ¼ 1; 2; 3; 4Þ (19)

where Kd
t is the dynamic stiffness matrix of the substructure, xi is the distance from the left-hand

interface of the ith substructure to the location of fi, N(x) is the shape function column vector of the
Bernoulli–Euler beam element, and ai, bi are vectors containing the two unknowns. From Eq. (15), the
displacement vectors at the left- and right-hand interfaces of the jth substructure, ul,ij and ur,ij, caused by fi can
be expressed as

ul;ij ¼ Xal
k�1ai; ur;ij ¼ Xal

kai; kX1 (20a)

ul;ij ¼ Xbl
�kbi; ur;ij ¼ Xbl

�k�1bi; kp� 1 (20b)
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where k represents the number of interfaces between the center of the jth substructure and the ith interaction
force. Finally, a (4� 4) matrix w

ij, which will be used in Eq. (26), is defined as

wij ¼

02 Xalk�1

02 Xalk

" #
if j4i

Xbl�k 02

Xbl�k�1 02

" #
if joi

Xb 02

02 Xa

" #
if i ¼ j

8>>>>>>>>>>><
>>>>>>>>>>>:

(21)

where 02 represents the a (2� 2) null matrix.

5.3. The equation of motion of the coupled system

The linear spring kh of Fig. 1 connects a wheelset to the beam, which represents a pair of rails, so that the
wheel–rail force fi can be expressed as

f i ¼ khðuti þ ri � uwiÞ; i ¼ 1; 2; 3; 4 (22)

where uti is the displacement of the pair of rails at the ith contact point; uwi the displacement of the ith wheelset
and ri the pseudo track irregularity, see Eq. (9). Because the coupled system is linear, the left- and right-hand
displacement vectors of the ith substructure, ul,i and ur,i, can be obtained as the sum of the responses caused by
each of the four wheel–rail forces, i.e.

ul;i ¼
X4
j¼1

ul;ji; ur;i ¼
X4
j¼1

ur;ji (23)

Hence, uti can be obtained from the NðxiÞ
T of Eq. (19) as

uti ¼ NðxiÞ
T

ul;i

ur;i

( )
(24)

Substituting Eqs. (20)–(24) into Eqs. (17) and (19) and writing them as a single equation gives the equation
of motion of the coupled system as

KU ¼ F (25)

K ¼
Kvv Kvt

Ktv Ktt

" #
(26)

Kvv ¼ Kd
v þ diag½0; 0; 0; 0; 0; 0; kh; kh; kh; kh�

K̄tt ¼

k11tt k12tt k13tt k14tt

k21tt k22tt k23tt k24tt

k31tt k32tt k33tt k34tt

k41tt k42tt k43tt k44tt

2
66664

3
77775; k

ij
tt ¼

khNðxiÞNðxiÞ
Twij if iaj

Kd
t þ khNðxiÞNðxiÞ

Twij if i ¼ j

(

Kvt ¼
06�4 06�4 06�4 06�4

K1
vt K2

vt K3
vt K4

vt

" #
; K

j
vt ¼ ½k

1j
vt ; k

2j
vt ; k

3j
vt ; k

4j
vt�

T; k
ij
vt ¼ �khNðxiÞ

Twij
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Ktv ¼

04�6 K1
tv

04�6 K2
tv

04�6 K3
tv

04�6 K4
tv

2
66664

3
77775;

K1
tv ¼ ½�khNðx1Þ; 04�1; 04�1; 04�1�

K2
tv ¼ ½04�1;�khNðx2Þ; 04�1; 04�1�

K3
tv ¼ ½04�1; 04�1;�khNðx3Þ; 04�1�

K4
tv ¼ ½04�1; 04�1; 04�1;�khNðx4Þ�

U ¼ fuv; b1; a1; b2; a2; b3; a3; b4; a4g
T (27)

Fvt ¼ khf0; 0; 0; 0; 0; 0; e
�iot1 ; e�iot2 ; e�iot3 ; e�iot4 ,

�Nðx1Þ
T e�iot1 ;�Nðx2Þ

T e�iot2 ;�Nðx3Þ
T e�iot3 ;Nðx4Þ

T e�iot4gT
ffiffiffiffiffiffiffiffiffiffiffiffi
~SrðoÞ

q
eiot (28)

where 0m� n denotes an (m� n) null matrix. The coupled system consists of a vehicle and four track
substructures, so that K is the 26� 26 dynamic stiffness matrix of the coupled system; U is the response vector
and; F is the pseudo force vector. Any pseudo response of the coupled system, ~u, can be obtained by solving
Eq. (25), then using PEM to obtain the response PSD from

SðoÞ ¼ ~u ~un (29)

where the superscript denotes complex conjugate.

6. Numerical examples

The vehicle and track parameters used in the example are listed in Tables 1 and 2, and [1] the American
track spectrum function for line grade 6 is adopted when Op2p and otherwise the function proposed by the
Chinese Railway Science Academy is used, giving

SrðOÞ ¼
kAvO2

c

O2ðO2 þ O2
cÞ
ðcm2=rad=mÞ

k ¼ 0:25; Av ¼ 0:0339; Oc ¼ 0:8245

ðOp2pÞ

SrðOÞ ¼ 0:036ðO=2pÞ�3:15ðmm2=rad=mÞ ðO42pÞ (30)

In order to demonstrate the track frequency-response characteristics for this example, the absolute values,
|m1| and |m2|, of the first two wave propagation coefficients are shown versus frequency in Fig. 4. It can be seen
that in the frequency ranges 0–45 and 65–100Hz these two absolute values are almost identical and are both
Table 1

Vehicle parameters

Vehicle body mass Mc 34� 103 kg Secondary suspension stiffness of vehicle kc 800� 103N/m

Bogie mass Mt 3000 kg Secondary suspension damping of vehicle cc 160� 103N s/m

Wheelset mass Mw 1400 kg Primary suspension stiffness of vehicle kt 1100� 103N/m

Vehicle body moment of inertia Jc 2.277� 106m4 Primary suspension damping of vehicle c 12� 103N s

Bogie moment of inertia Jt 2710m4 Half of bogie spacing, ¼ lc 9m

Wheel–rail contact constant G 5.135� 10�8m/N2/3 Half of wheelset spacing, ¼ lt 1.2m

Table 2

Track parameters

Mass of rail mr 121.28kg/m Railpad stiffness kp 15.6� 107N/m

Rail bending stiffness EI 13.25� 106Nm2 Ballast stiffness kb 4.8� 108N/m

Sleeper mass ms 237kg Subgrade stiffness kf 13� 107N/m

Ballast mass mb 1365.2 kg Sleeper spacing l 0.54m
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Fig. 4. Wave propagation coefficients.

Fig. 5. Harmonic response amplification.
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less than 1, so that the corresponding waves will decrease when propagating, whereas in the frequency range
45–65Hz they are quite different, such that |m1| is always significantly less than 1 whereas |m2| is equal to 1 for
much of the range to which the corresponding wave will remain its amplification during propagation. Note
that the damping is not included in Fig. 4. If considering the damping, |m1| and |m2| will be always less than 1.
Fig. 5 shows the vibration amplification of the rails at the middle of a substructure, which has unit harmonic
force applied there, and it can be seen that the track resonates when the frequency is a little above 40Hz. Here,
the damping coefficient is 0.2.

In order to test the correctness of the method and program of this paper its results for the vehicle body and
bogie accelerations and for the wheel–rail force PSDs are compared in Fig. 6, for V ¼ 100 km/h and the track
damping coefficient is n ¼ 0.2, with FEM results for which the beam which represents the rails is modelled as
having finite length and clamped ends, with the length chosen such that each end of the beam is 20m from the
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Fig. 6. Comparison between results given by the present method and those given by FEM: (a) vertical acceleration PSD of vehicle body;

(b) vertical acceleration PSD of bogie 1; (c) wheel–rail force PSD of wheelset 1.
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nearest wheelset. As is usual in practice, in these results the wheel–rail forces presented are for contact between
one wheel and one rail. It can be seen that the results given by the two methods agree well although there are
small differences due to the clamped boundary conditions assumed by the FEM analysis. The present method
and FEM gave identical standard deviations for the three responses: 0.1125m/s2, 0.4010m/s2 and 18.76 kN,
respectively. Hence, the appropriateness of the method and program are verified. Moreover, the PSD for the
vehicle body has by far its largest values in the vicinity of 1.5Hz, i.e. close to the fundamental frequency of the
vehicle, whereas the PSD for the bogie has peaks there and also at about 40 and 80Hz. Obviously, the peak
near 1.5Hz is caused by the vehicle body and the peaks at 40 and 80Hz are caused by wheel–rail forces. These
are shown in Fig. 6(c) which also shown peaks around 1.5, 40 and 80Hz, but which has several more peaks in
the frequency range 200–1000Hz. Similar conclusions were drawn in Ref. [1].

The traditional model assumes that the vehicle moves on rigid rails which rest on a rigid foundation but
which have the profile r(x). Fig. 7 compares the vehicle body acceleration and wheel–rail force PSDs given by
this traditional model with those given by the model of this paper, for V ¼ 160 km/h and n ¼ 0.2. Clearly,
there is excellent agreement in the low-frequency region, but in the high-frequency region there are major
differences. The wheel–rail force PSD for the traditional model has a resonance peak near 200Hz, i.e. close to
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Fig. 7. Comparison between results given by the present model and those given by the traditional model: (a) vertical acceleration PSD of

vehicle body; (b) wheel–rail force PSD.

Fig. 8. Influence of track damping: (a) vertical acceleration PSD of vehicle body; (b) vertical acceleration PSD of the bogie.
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the free vibration frequency of the wheelset,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kh=Mw

p
=2p ’ 201Hz, whereas the PSD for the present model

has a peak at about 80Hz which is caused by the interaction of wheelset and rails. Therefore, because the
vehicle body response is mainly in the low frequency range it is reasonable to use the traditional model to
analyze it.

Damping is a very important characteristic for structures. Therefore, hysteretic damping is taken into
account, using the method given in the paragraph beneath Eq. (15). Fig. 8 shows the vehicle body and the
bogie acceleration PSDs for track damping coefficients of n ¼ 0.1, 0.2 and 0.3 when V ¼ 100 km/h. It can be
seen that damping influences the vehicle body responses insignificantly because they occur mainly in the low
frequency range, whereas increasing it may significantly reduce the bogie acceleration PSD in the high-
frequency region.

Vehicle velocity also has an important influence on the responses, as Fig. 9 shows. However, it can be seen
that increasing the velocity does not always give stronger responses. Thus, for V ¼ 120 km/h the peak of
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Fig. 9. Influence of vehicle velocity, for n ¼ 0.2: (a) vehicle body response; (b) bogie response; (c) wheel–rail force.
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vehicle body vertical acceleration PSD is at about 1.8Hz, decreases and shifts up to about 2Hz
at V ¼ 160 km/h and then increases greatly and shifts back to around 1Hz at V ¼ 250 km/h. To explain
this, results were obtained for V ¼ 80, 90, y, 240, 250 km/h and these showed that the peaks denoted by A
and B on Fig. 9(a) both moved to the right as V increased, but that the peak at A was decreasing while that at
B was increasing, such that they were of equal height at approximately V ¼ 190 km/h. Generally speaking, the
response peaks may appear at the resonant frequencies due to the frequency-response function, but not always
distinctly so. The distribution of the excitation PSD in the frequency domain may very strongly influence the
response. Moreover, for multiexcitation problems, the influence of different excitations on an arbitrary
response may be superposed or may counteract each other. For the vehicle–track system discussed, the vehicle
velocity decides the time lags between the wheel–rail contact forces as well as the distribution of external
excitations in the frequency domain caused by the track irregularity. Each of them may play a dominant role
for the distribution of the response PSD in the frequency domain. For the bogie vertical acceleration PSD, the
peak value in the high-frequency region at velocity 120 km/h is almost equal to that at 160 km/h. The reason is
that the influences of the wheel–rail forces acting on the bogie and hence on the vehicle body cancel each
other due to time lags at velocity 160 km/h. For wheel–rail forces, the peak value increases with increasing
velocity.
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7. Conclusions

PEM and symplectic solution methodology have been combined to study random vibration of vehicle–track
coupled systems. PEM is used to transform the random multiexcitation problem into a deterministic harmonic
excitation one and a symplectic solution method has been applied to account for the track harmonic
responses. The numerical example has verified the accuracy of the proposed method and program; compared
results from the present model with those from the traditional rigid track model and; been used to investigate
the influences of track damping and vehicle velocity. The following conclusions can be drawn:
1.
 The traditional model is suitable for analyzing vehicle body response, but for bogie response and for
wheel–rail interaction forces the coupled system is more reliable.
2.
 Damping of the track has negligible effect on vehicle body response but influences bogie response PSDs and
wheel–rail interaction force PSDs significantly.
3.
 Vehicle velocity influences the response PSDs significantly, but they do not increase monotonically with
velocity.
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